
92 0A INTUOUCTIUN TO RON (TRADE NAME) UINGE FORTRAN AS A 1i
NASIS(U) wRH MISSILE COMMNDREDSTONE ASElL .L

MWfihCED SESORS OlRt. R K COUIIEI± JA 07

UW0MCMSSIFORMUNLTR-RD-AS-S7-2 SBI-RO-E964 F/O V2EmhhmhhhmhhiuL
mhmmhhhhhummi

'""1.0 C"

L3.

-~ U.8

1 25 ILAE

MI

ml

_WANK

I I FILE COPY

TECHNICAL WORT ID-AS-87-2

AN INTRON TOE TO ADA USING FORTRAN AS A BASIS

Roland K. Cornwell
Advanced Sensors Directorate
Research, Development, and Engineering Center

JANUARY 1987

V Redetc~rne4 Areen4sm, Ahabarvis 35898-5000

Approved for Public Release; distribution is unlimited.

DTIC

~ O~iC

-Czk'ELECTE f
S APR 2t111UE

L OW FORM 1021. 1 AUG 85 PREVIOUS EDITION IS OBSOLETE

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT
RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES
NOT CONSTITUTE AN OFFICIAL INOORSEMENT OR APPROVAL OF
THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

U

)i~d' ~

SECURTY CHSffiCATEON OFTH S PAGE- 4
Form Approved

REPORT DOCUMENTATION PAGE . 0MB No 0704.0188
___ IExp Dare Jun 30, 1986

l. REPORT SECURITY CLASSIFICATION
lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
, Approved for Public Release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Disribudion iuli ieds
Distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

RD-AS-87-2

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Advanced Sensors Dir (If applicable)

RD&E Center AMSMI-RD-AS-RA
6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State. and ZIP Code)

Com d
USm AM Missile Command
ATTN: AMSMI-RD-AS-RA
Redstone Arsenal. Alabama 35_-5253

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

kc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO ACCESSION NO

11. TITLE (Include Security Classification)

AN INTRODUCTION TO ADA USING FORTRAN AS A BASIS

12. PERSONAL AUTHOR(S)
Cornwell, Roland K.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM TO OCT 86 JANUARY 1987 21

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)
FIELD GROUP SUB-GROUP ADA; Programming; Computer Languages;

Software; Computers.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Although almost every Electrical Engineer has heard about the new DOD programming
language Ada, many still have very little knowledge of the-capabilities of the language.
Ada is a structured language with many new features not available in older languages.
Since most engineers are familiar for FORTRAN, this report introduces Ada by making a
comparison with FORTRAN. Example programs are given in both languages to illustrate
some of the new features of Ada.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
* UNCLASSIFIEDUNLIMITED 0 SAME AS RPT. Q DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Roland K. Cornwell 205-876-7580 ASM- -

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

i/(ii blank) UNCLASSIFIED

TABLE OF CONTENTS

Page

I. INTRODUCTION ... I

II. BACKGROUND I

III. OVERVIEW 3

IV. COMPARISON OF FORTRAN AND ADA 4

A. Sample Programs 4

B. Statistics 9

V. CURRENT STATUS OF ADA ... 13

VI. CONCLUSION 13

REFERENCES 17

Accesslen For

NTIS GRA&I
DTIC TAB
Unannounced 0
JustificatiO

By
Distribut ion/
Availability CodeS

lAvail andjar
Dist 1Special

Dfl SPO jak

il/(iv blank)

I. INTRODUCTION

This report provides engineers who have at least some working knowledge of

computer programing with an introduction to the new United States Department
of Defense (DOD) programing language, Ada*. Since most engineers are famil-
iar with FORTRAN, special attention is given to comparing Ada with FORTRAN IV.
Example programs are shown in both languages and the relative merits of each
are discussed. FORTRAN IV was chosen over FORTRAN 77 to allow the report to
be meaningful to engineers who are not familiar with the enhancements of
FORTRAN 77. This should not cause any problems for FORTRAN 77 programmers
since FORTRAN IV is a subset of FORTRAN 77.

While it is not designed to be a complete tutorial guide to computer pro-
graming or Ada, this report should give the reader enough information to feel
comfortable when Ada is mentioned in a briefing or in a publication. Interest-
ed readers can pursue the topic by working with the examples and by studying
the sources identified in the references.

The Ada examples used were developed on an IBM XT using JANUS/Ada from RR
Software Inc. Since it is only a subset of Ada, JANUS/Ada is not a validated
compiler. Its limitations and extensions are listed in Appendix L of the user
manual [1]. A complete, validated, compiler was not available for use in writ-
ing this report.

II. BACKGROUND

As computers and microprocessors became cheaper, smaller, and more power-

ful, the practice of using computers in various devices became wide spread.
This rapidly lead to the realization that both time and resoures must be shared
between hardware and software in developing, modifying, and using such a sys-
tem. In the early 1970's the DOD, and other consumers of integrated hardware
and software systems, began to recognize that the expense of designing, develop-
ing and maintaining software was becoming prohibitive [2]. In many systems more
resources were expended on software than hardware. While advances in tech-
nology had resulted in decreasing prices for hardware, the system costs asso-
ciated with software continually increased. Figure 1 shows the forecasts
resulting from studies conducted by the Electronic Industries Association
(EIA) in 1980 and 1985. The graphs illustrate that as the total hardware and
software market for embedded computer systems increases, the software portion
of the market is increasing more rapidly than the hardware portion (3].

The flexibility of software has encouraged system designers to develop a
pattern of transferring system functions from hardware to software. This al-
loved the same piece of hardware to be programmed to do various jobs for dif-
ferent customers or to perform numerous functions for the same customer. After
a system was delivered, software changes and enhancements often continued
indefinitely, and in some cases, for the entire life of the system. It was
the ability to make these software changes that extended the useful life of
many systems. This trend is expected to continue and will result in more
complex, and more expensive, software systems.

*Ada is a trademark of the U.S. Department of Defense.

#I. .1

S Bilans 37."

Total Mlrket

Software Portion of Tota 32.10

30 • Haedwwe Portins Total

/
/

20- 13.92 1000

10, .. 1

,2.82 ° --- *9

60 86 n.

I0 Forecast

so 42O

40
31.21 ,

,
3S."

30

20 . _

10 11.4 -
- - 5.2 6.79

009

I9W6I F

Figure 1. EIA embedded computer market forecasts [3].

The Department of Defense recognized that as a consumer of diverse sys-
tems it was spending huge amounts of money to maintain and modify the manydifferent systems it purchased. Many times the systems that the DOD acquired
arrived with software written in different assembly languages to match the var-
ious processors chosen by the systems designers. These different languages
made it very difficult for users to maintain or modify the systems. Assemblylanguage programming was bothersome enough without the added burden of remem-
bering the idiosyncrasies of a number of different assembly languages. To
solve this problem the DOD decided (in 1974) to develop a single standard
language for use in its embedded computer systems.

The first attempt to set guidelines for the new standard computer pro-graming language was published in early 1975 and called Strawman (4]. Ad-
ditional studies were conducted and a version known as Woodenman was created.
In June 1976, a document known as Tinman was produced that established many of
the requirements for the new language. A study of various existing languages
was completed to determine which would most closely match the requirements of

2

,U, U U U , * * -. -- , . , --' ,..--'-r- .- ,.* .". , ,- ~ ~ ~ ~ ~ U 5 ' , "''""''" >,"r '

Tinman. Further revisions resulted in Ironman, from which seventeen contrac-
tor proposals to develop the language were generated. Four companies were
chosen to proceed with their proposed designs. It is an interesting obser-
vation that each of the four companies chose Pascal to be the starting point
for their efforts (5]. The final requirements document (Steelman) was pro-
duced and CII Honeywell Bull was selected to develop the language in 1979
using an international team lead by Jean Ichbiah. The new language was named
Ada in memory of Augusta Ada Byron, Countess of Lovelace (1815 - 1852). She
is thought to be the first programmer because of her work with Charles Babbage

* and his mechanical analytical engine. The ANSI standard, Reference Manual
for The Ada Programing Language [61, was published in 1983 and serves as the
current definition of the language [41.

III. OVERVIEW

Since Ada was patterned after Pascal, it is not surprising that much of
the structure of Pascal is evident in the new language. There is a subset of
Ada instructions that is decidedly similar to Pascal so it should be easy for
Pascal programmers to convert to Ada (7]. Although there are some detailed
differences, and some extensions in Ada, these should not present a problem.

Upon looking at an Ada program for the first time, a FORTRAN programmer
may get the impression that the statements are unnecessarily long. When used
properly, the longer text of Ada leads to self-documenting code and allows
more error checking by the compiler. Ada was designed to be easier to read
than to write since a program is written only once but may be read many times
during its lifetime. A FORTRAN programmer accustomed to taking advantage of
the default data types (those beginning with I, J, K, L, M, and N being INTEGER
and anything else being REAL) may find the general requirement to declare the
type of all variables cumbersome at first; however, this may save some errors
and make programs easier to read. Some FORTRAN programmers, and some text-
books, recommend that all variables be declared even when it is not required
[8]. Others rely heavily on the default data types [9,10,11).

Data abstraction may be a new concept to many users of FORTRAN. In
general, abstraction may be defined to mean the process by which the functional
characteristics of a facility are distinguished from the implementation of that
facility (121. This allows the programmer to define new data types such as
colors, kinds of fish, or days of the week, that do not have the restrictions
of working with only REAL, INTEGER, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER data types. For example: A data type, BIRDS, may be declared such
that there are only four legal values for variables of that type: eagles,

* cardinals, robins, and wrens. This would allow these birds to be referred to
without resorting to mapping each species to a number.

Input and output in Ada is completely different in that there is no
predefined READ statement or WRITE statement in the language. I/O must be
provided by another Ada package supplied with the compiler or written by the
user. In order to maintain program portability, certain standard I/O packages
are required to always be available.

3

IV. COMPARISON OF FORTRAN AND ADA

A. Sample Programs

In order to make a comparison of FORTRAN and Ada, a sample program in
each language is presented in Examples 1 and 2 respectively. The examples cal-
culate the roots of a first or second order polynomial:

A*X**2 + B*X + C - 0.

When A is equal to zero, it will be a first order or linear equation having
only one root:

Rl - -C / B.

If A is not equal to zero, the two real or complex roots of the quadratic
equation will be found using [13]:

RI - (-B + SQRT (B**2 - 4*A*C)) / (2*A),

R2 - (-B - SQRT (B**2 - 4*A*C)) / (2*A).

The FORTRAN IV program is shown in Example 1. It should be noted that
the line numbers in these examples are not part of the programs but are in-
serted by the line editor (Edlin) used in preparing the programs. Lines 1
and 2 are simply comments to briefly describe the function of the program.
Line 7 prompts the user to type the first coefficient of the equation and line
9 reads it in. Lines 11 - 16 input the other two coefficients in the same
manner. Note that the use of an "*" symbol as the unit number in a WRITE or
READ statement directs output to the screen and accepts input from the key-
board respectively. Line 20 checks to see if it is a linear equation. If
so, line 21 - 24 calculate and print the root of the equation and stop the
program. Otherwise, lines 29 and 30 test to see if the equation has complex
roots. If so, they are calculated and printed by lines 31 - 36. Otherwise,
lines 42 - 45 are used to calculate and print the real roots.

Example 1. SAMPLE FORTRAN PROGRAM

1: C SAMPLE FORTRAN IV PROGRAM TO FIND THE ROOTS OF A FIRST
2: C OR SECOND ORDER POLYNOMIAL A*X**2 + B*X + C = 0
3: C
4: C
5: C INPUT COEFFICIENTS OF POLYNOMIAL
6: C
7: WRITE(*,1000)
8: 1000 FORMAT(' INPUT A ')
9: READ(*,1003) A

10: 1093 FORMAT(FIG.4)
11: WRITE(*,1001)
12: 1001 FORMAT(' INPUT B ')
13: READ(*,1.003) B
14: WRITE(*,1092)
15: 1002 FORMAT(' INPUT C ')

4

Example 1. SAMPLE FORTRAN PROGRAM (Continued)

16: READ(*,1003) C
17: C
18: C CHECK FOR A LINEAR EQUATION
19: C
20: IF (A .NE. 0.0) GO TO 100
.21: X- -C/B
22: WRITE(*,1004) X
23: 1004 FORMAT(' THE ROOT OF THE LINEAR EQUATION IS: X= 1,F9.4)
24: STOP
25: 100 CONTINUE
26: C
27: C CHECK FOR COMPLEX ROOTS
28: C
29: RADICL= B**2 - 4.0*A*C
30: IF (RADICL .GE. 0.0) GO TO 200
31: XR- -B / (2.0*A)
32: XI- ABS(SQRT(-RADICL) / (2.0*A))
33: WRITE(*,1005) XR,XI
34: WRITE(*,1006) XR,XI
35: 1005 FORMAT(' THE COMPLEX ROOTS ARE X1 - 1,F9.4,1 + j',F9.4)
36: 1006 FORMAT(' AND X2 - ',F9.4,1 - j',F9.4)
37: STOP
38: 200 CONTINUE
39: C

40: C CALCULATE REAL ROOTS
41: C
42: X1=(-B + SQRT(RADICL)) / (2.0*A)
43: X2-(-B - SQRT(RADICL)) / (2.0*A)
44: WRITE(*,1007) X1,X2
45: 1007 FORMAT(' THE ROOTS ARE X1 1 ,F9.4,' AND X2 1 ,F9.4)
46: STOP
47: END

Program Output:

C>POLYNOM
INPUT A

* 0.0
* INPUT B

3.0
INPUT C
6.0
THE ROOT OF THE LINEAR EQUATION IS: X- -2.9000
stop - Program terminated.

5

Example 1. SAMPLE FORTRAN PROGRAM (Continued)

C> P0LYNOM
INPUT A
1.0
INPUT B
-2.0
INPUT C
-8.0
THE ROOTS ARE X1 4.000 AND X2 - -2.900
Stop - Program terminated.

C>POLYNOM
INPUT A
-1.0
INPUT B
-2. 0
INPUT C
-3.0
THE COMPLEX ROOTS ARE X1 - -1.0000 + j 1.4142

AND X2 - -1.0000 - j 1.4142
Stop - Program terminated.

Some parts of the Ada program shown in Example 2 are similar to the FJR-
TRAN example while other parts are very different. The "with" statement in
Line 1 specifies library routines that will be needed. Notice that both upper
and lower case characters are used. In general, the example Ada programs in
this report will use lower case for the 63 reserved identifiers ("With", "if",
"then", "loop", "for", etc.)'and upper case for identifiers representing vari-
ables chosen, by the programmer. Identifiers representing packages, procedures,
and functions will have only the first letter capitalized. Identifiers are
analogous to FORTRAN keywords (DO, GO TO, IF, SUBROUTINE, etc.), variable
names, and subroutine names. Identifiers may also be used as labels when en-
closed in double angled brackets such as: <(LABEL >. Ada is not case sensi-
tive except when the characters themselves are under consideration such as in
manipulating character strings. The programmer may choose to use upper and
lower case as desired In order to make programs more readable. In general,
each statement is terminated with a semicolon. A few exceptions are after:
"if ... then", "else", "case ... is", and "procedure ... is", all of which
have more information to follow and are terminated with a semicolon at the end
of the section. For example, a semicolon is used after "end if".

Line 2 states that the name of the "package body" to follow is Polynomi.
If desired, the package body may be preceded by a package specification which
is not needed for this example program. The package specification would begin
with: "package Polynomi is", followed by a listing of all procedures (or sub-
programs) and functions contained within the package. The package specifi-
cation provides the interface to other programs and the package body contains
the hidden details of how the package works.

6

A brief description of the program is given in lines 4 and 5. Comments
are preceded by two dashes and may occur at the beginning of a line or after
the semicolon terminating another program line.

Ada requires the type (integer, real, etc.) of each variable used in a
program to be declared. Line 8 declares that the variables listed before the
colon are of type float. Identifiers, including variable names, must begin
with a letter, may include isolated underline characters for clarity, and are
not restricted to a particular length. For example: long sample identifier
and LongSample_Identifier are both legal identifiers and are considered to
be the same since Ada is not case sensitive.

Line 10 gives the program immediate access to the routines, such as Sqrt,
contained within the library package: Mathlib. If this "use" statement were
not in the program, Sqrt could only be accessed indirectly by writing:
Mathlib.Sqrt. This would indicate to the system the routine Sqrt could be
found in Mathlib. Line 12 identifies the beginning of the executable portion
of the program. All of the preceding statements were declarations.

Line 16 is a command to print the character string, "INPUT A", to the
screen. Having read this prompt, the user is to type the value of the first
coefficient on the keyboard and press return. Line 17 places the value into
the variable A. Floatio.Get(A) indicates the routine Get can be found in the
library package Floatio. Lines 18 - 21 input the other two coefficients in
the same fashion.

Line 25 checks for a linear equation by testing for A equal to zero. If
true, the root is calculated and printed by Lines 26 - 28. Notice that line
28 has more than one command on a single line. The second command, New line,
prints a carriage return and line feed so that the next output will not occur
on the same line. If A is not equal to zero, control is passed to line 30
where the "else" portion of the "if" block begins. Line 34 calculates the
value of B**2 - 4.0*A*C and places it in the variable RADICAL. The symbol
. :- ", which may be read as "becomes", takes the place of the equals symbol
that is used in that position in a FORTRAN program. Line 35 determines wheth-
er the equation has complex roots. If so, lines 36 - 43 calculate and print
the roots. Line 36 calculates the real part and line 37 calculates the imag-
inary part. Lines 38 - 40 print the first root and lines 41 - 43 print the
second root. No carriage return and line feed are printed except when the
New line command is encountered at the end of lines 40 and 43. If the
equation has real roots, they are calculated and printed by lines 48 - 52.

The "end if" statements on lines 53 and 54 indicate the end of the pre-
ceding "if" blocks. Notice that the "if...then" on line 35, the "else" on
line 44, and the "end if" on line 53 are vertically aligned. This is a good
practice as it allows the structure of the program to be clearly visible.

Finally, line 55 indicates that this is the end of the package. The
identifier, Polynomi, is optional after the end, but it is a good practice to
include the name here since it clarifies what is being ended. This is espe-
cially true when a package contains a number of procedures with an end state-
ment for each.

en fo eac7

A

Example 2. SAMPLE ADA PROGRAM

1: with Floatio,Mathlib;
2: package body Polynomi is
3:
4: -- SAMPLE ADA PROGRAM TO FIND THE ROOTS OF A FIRST
5: -- OR SECOND ORDER POLYNOMIAL A*X**2 + B*X + C - 0
6:
7:
8: A,B,C,ROOT_1,ROOT_2,RADICAL,REALPART,IMPART:FLOAT;
9:

10: use Mathlib;
11:
12: begin
13:
14: -- INPUT COEFFICIENTS OF POLYNOMIAL
15:
16: Put("INPUT A : ");
17: Floatio.Get(A);
18: Put("INPUT B : ");
19: Floatio.Get(B);
20: Put("INPUT C : ") ;
21: Floatio.Get(C);
22:
23: --CHECK FOR A LINEAR EQUATION
24:
25: if A=0.0 then
26: ROOT 1:= -C/B;
27: Put("THE ROOT OF THE LINEAR EQUATION IS: ");
28: Floatio.Put(ROOT_1); New-line;
29:
30: else
31:
32: --CHECK FOR COMPLEX ROOTS
33:
34: RADICAL:= B*B - 4.0*A*C;
35: if RADICAL < 0.0 then
36: REAL PART:- -B / (2.0*A);
37: IM PART:= Abs(Sqrt(-RADICAL) / (2.0*A));
38: Put("THE COMPLEX ROOTS ARE Xl ");
39: Floatio.Put(REAL PART);Put(" + j");
40: Floatio.Put(IMPART); New-line;

41: Put(" AND X2 = ");
42: Floatio.Put(REAL PART);Put(" - j");
43: Floatio.Put(IMPART);New line;
44: else
45:
46: --CALCULATE REAL ROOTS
47:
48: ROOT 1:- (-B + Sqrt(RADICAL)) / (2.0*A);
49: ROOT 2:= (-B - Sqrt(RADICAL)) / (2.0*A);
50: Put("THE ROOTS ARE : ");
51: Floatio.Put(ROOT l);Put(" AND ");
52: Floatio.Put(ROOT-2); New-line;
53: end if;

8

. , ', --' "- "-V .'- -' '-" '" -" ' -" " " "- -" "- " -- " J - -' " '-" " v -' - "- " .,"

Example 2. SAMPLE ADA PROGRAM (Continued)

54: end if;
55: end Polynomi;

Program Output:

C>POLYNOMI
INPUT A : 0.0
INPUT B : 3.0
INPUT C : 6.0
THE ROOT OF THE LINEAR EQUATION IS: -2.00000E+0

C> POLYNOMI
INPUT A : 1.0
INPUT B : -2.0
INPUT C : -8.0
THE ROOTS ARE : 4.09000E+9 AND -2.00000E+0

C>POLYNOMI
INPUT A : -1.0
INPUT B : -2.0
INPUT C : -3.0
THE COMPLEX ROOTS ARE X1 = -1.00000E+0 + j 1.41421E+0

AND X2 - -l.00000E+g - j 1.41421E+9

B. Statistics

In order to compare execution times of the FORTRAN and Ada programs,
a loop was inserted around the lines that compute real and imaginary parts of
an equation that has complex roots. These changes can be seen at line numbers
31 - 37 of Example 3 and line numbers 37 - 42 of Example 4. This causes those
lines to be executed 30,000 times before the results are printed. The amount
of time required to compile and link these programs using a batch file, and the
execution times, are shown in Table 1.

Example 3. FORTRAN PROGRAM WITH LOOP FOR RUN TIME COMPARISONS

1: C SAMPLE FORTRAN IV PROGRAM TO FIND THE ROOTS OF A FIRST
2: C OR SECOND ORDER POLYNOMIAL A*X**2 + B*X + C 0
3: C
4: C
5: C INPUT COEFFICIENTS OF POLYNOMIAL
6: C
7: WRITE(*,1000)
8: 1000 FORMAT(' INPUT A ')
9: READ(*,1003) A

10: 1003 FORMAT(FI10.4)
11: WRITE(*,1001)
12: 1001 FORMAT(' INPUT B ')
13: READ(*,1003) B

9

Example 3. FORTRAN PROGRAM WITH LOOP FOR RUN TIME COMPARISONS (Continued)

14: WRITE(*,1002)
15: 1002 FORMAT(' INPUT C '
16: READ(*,1003) C
17: C
18: C CHECK FOR A LINEAR EQUATION
19: C
20: IF (A .NE. 0.0) GO TO 100
21: X- -C/B
22: WRITE(*,1004) X
23: 1004 FORMAT(' THE ROOT OF THE LINEAR EQUATION IS: Xw 0,F9.4)
24: STOP
25: 100 CONTINUE
26: C
27: C CHECK FOR COMPLEX ROOTS
28: C
29: RADICL- B**2 - 4.0*A*C
30: IF (RADICL .GE. 0.0) GO TO 200
31: C
32: C LOOP INSERTED TO COMPARE EXECUTION TIMES
33: C
34: DO 300 1-1,30000
35: XR- -B / (2.0*A)
36: XI- ABS(SQRT(-RADICL) / (2.@*A)
37: 300 CONTINUE
38: C
39: WRITE(*,1005) XR,XI
40: WRITE(*,1006) XR,XI
41: 1005 FORMAT(' THE COMPLEX ROOTS ARE X1 = 1,F9.4,' + J',F9.4)
42: 1006 FORMAT(' AND X2 - 1,F9.4,' - j',F9.4)
43: STOP
44: 200 CONTINUE
45: C
46: C CALCULATE REAL ROOTS
47: C
48: X1-(-B + SQRT(RADICL)) / (2.0*A)
49: X2-(-B - SQRT(RADICL)) / (2.0*A)
50: WRITE(*,1007) X1,X2
51: 1007 FORMAT(, THE ROOTS ARE X1 0 ,F9.4,' AND X2 -',F9.4)

52: STOP
53: END
Program Output:

C>POLYNLOP
INPUT A
-1. 0
INPUT B
-2.0
INPUT C
-3.0
THE COMPLEX ROOTS ARE X1 -1.0000 + j 1.4142

AND X2 * -1.0000 + j 1.4142
Stop - Program terminated.

10

Example 4. ADA PROGRAM WITH LOOP FOR RUN TIME COMPARISONS

1: with Floatio,Mathlib;
2: package body Polyloop is
3:
4: --SAMPLE ADA PROGRAM TO FIND THE ROOTS OF A FIRST
5: --OR SECOND ORDER POLYNOMIAL A*X**2 + B*X + C - 0
6:
7:
8: A,B,C,ROOT_,ROOT_2,RADICAL,REALPART,IMPART:FLOAT;
9:

10: use Mathlib;
11:
12: begin
13:
14: --INPUT COEFFICIENTS OF POLYNOMIAL
15:
16: Put("INPUT A : ");
17: Floatio. Get (A);
18: Put("INPUT B :);
19: Floatio.Get(B);
20: Put("INPUT C : ");
21: Floatio.Get(C);
22:
23: --CHECK FOR A LINEAR EQUATION
24:
25: if A=0.9 then
26: ROOT 1:- -C/B;

27: Put("THE ROOT OF THE LINEAR EQUATION IS: ");
28: Floatio.Put(ROOT i); New_line;
29:
30: else
31:
32: --CHECK FOR COMPLEX ROOTS
33:
34: RADICAL:- B*B - 4.@*A*C;
35: if RADICAL < 0.0 then
36:
37: --LOOP INSERTED TO COMPARE EXECUTION TIMES
38:
39: for I in 1..30000 loop
40: REAL PART:- -B / (2.0*A);
41: IM_PART:- Abs(Sqrt(-RADICAL) / (2.0*A));
42: and loop;
43:
44: Put("T E COMPLEX ROOTS ARE Xl
45: Floatio.Put(REAL PART);Put(" + J");
46: Floatio.Put(IM_PART); Newline;
47: Put(" AND X2 - ");
48: Floatio.Put(REAL PART);Put(" - j");
49: Floatio.Put(IMPART);New line;
50: else

11

Example 4. ADA PROGRAM WITH LOOP FOR RUN TIME COMPARISONS (Continued)

51:
52: --CALCULATE REAL ROOTS
53:
54: ROOTi: = (-B + Sqrt(RADICAL)) / (2.0*A);
55: ROOT -2:= (-B - Sqrt(RADICAL)) / (2.0*A);
56: Put(rTHE ROOTS ARE : ");
57: Floatio.Put(ROOT l);Put(" AND ");
58: Floatio.Put(ROOT_2); New-line;
59: end if;
60: end if;
61: end Polyloop;

Program Output:

C>POLYLOOP
INPUT A : -1.0
INPUT B : -2.0
INPUT C : -3.0
THE COMPLEX ROOTS ARE X1 -1.00000E+0 + j 1.41421E+0

AND X2 -1.00000E+0 - j 1.41421E+0

TABLE 1. Compile and Execution Times (minutes:seconds).

FORTRAN ADA

COMPILE AND LINK 1:32 2:56

EXECUTION 0:22 0:37

The size of the disk files occupied by these programs is shown in
Table 2. It should be understood that the comparison of these two example
programs does not represent a statistical sample and general conclusions may
not be drawn from this data. Also, it is well known that when new languages
are designed the first compilers written for them may not be very efficient.
After many years of experience in writing compilers for a new language have
been acquired, better compilers will usually become available. For example,
the FORTRAN compilers available today are much better than the first FORTRAN
compilers that were developed. General conclusions about the efficiency of
the two languages should be made only after testing a number of different
programs compiled and run on various machines.

TABLE 2. Size of Disk Files (bytes).

FORTRAN ADA

SOURCE FILE 1331 1317

EXECUTABLE FILE 40122 22272

12

V. CURRENT STATUS OF ADA

The DOD is very concerned with enforcing the Ada standard and has copy-
righted the name "Ada" in order to maintain control of the language. To
assure standardization, a compiler must pass more than 2500 validation tests
before it is allowed to use Ada as its title. Revalidation must be completed
annually at a cost currently estimated to be $75,000 per compiler [14]. Valida-
tion of new compilers and revalidation of old compilers is currently the re-
sponsibility of the Ada Joint Project Office (AJPO). Some changes in the vali-
dation requirements are being considered as the number of compilers in need of
validation increases [151.

Ada was standardized as ANSI/MIL-STD-1815A in February 1983. This was
eight years after DOD first began to define the technical requirements for the
new language. At that time it was difficult for people to begin to learn the
language due to the lack of available compilers. Although some critics thought
it could not be done, two compilers had been validated by the end of 1983:
one developed by Data General under license from Rolm Corp., and one from
Western Digital Corp. (14]. By mid-1984 only about a half-dozen Ada compilers
had been validated. In November 1985 the number had grown to 16. By April 2,
1986 there were 29 validated Ada compilers available [3]. A list of these 29
validated compilers was put together by Defense Electronics in July 1986 and
is shown in Figure 2.

VI. CONCLUSION

Programmers who are only familiar with FORTRAN have fallen behind the
current software technology and would probably benefit from putting forth the
effort required to learn a new structured language such as Ada. Users of
newer languages, such as ALGOL and especially PASCAL, will find Ada easier to
use. However, there are enough similarities between FORTRAN and Ada to allow
FORTRAN programers to understand Ada with a reasonable effort. When beginning
to use Ada, FORTRAN programmers must exercise care not to ignore all of the
new features available in the language and simply create FORTRAN programs
within the syntax of Ada.

As can be seen from the previous example programs, Ada is a general pur-
pose language which may be used for standard data processing needs in spite of
the fact that it was originally designed for use in embedded computer applica-
tions. The new features of Ada such as data abstraction, tasking, strong data
typing, exception handling, and its readability, are expected to encourage its
use outside of its original target area. FORTRAN certainly has not lost its
usefulness since it has been so widely used and there is an enormous library
of scientific algorithms available in the language. However, Ada can increase
s FORTRAN programmers capabilities and open up a complete new world of soft-
ware concepts.

13

S

Hos Mechin& Tee" Machim & Ted SUNG Dais
VWW & c om 0Owatin Systm Opalng Sy~Mm Versio Vagdmed

Alsys (France) VAX 11/750 (VMS 4.1) ALTOS ACS 6800014 1.6 11-08-85
AlsyCOMP001 Version 1.3 (ALTOS Version 1)

Ay (France) HP 9000 200/220 & 300/320 Sane as Host 1.6 11-02-05
AsvCOMP002 Version 1.0 (HP-UX V5.0)

AIA (France) Apollo DOMAIN ON460, DN360, Same as Host 1.6 11-03-85
AlSyOMP004 Version 1.0 DSP6A (AEGIS Vera. SR9)

Aya (France) SUN Wokltabin 2/120.250. Same a Host 1.6 11-02-85
AIyCOMP005 Version 1.0 3/160 (SUN UNIX 4.2)
Alsys (France) VAX 111750 (VMS 4.1) IBM PC-AT (MS-DOS 3.1) 1.6 12-05-85
AIsyCOMP0S Version 1.0
Air Force Armament Lab. CDC Cyber 1701760 (NOS 2.4) Zlog Z 1.6 10-15-5
AFATL Ada Cross Development Module (Dev.

Comoiler 1.0 Module Monitor Programl

Da:a General Corp. 0s/4000. DS/4200, All host architecturs plus the 1.5 05-18-85
ADE Ada Compiler MV/4000-OC MV/4000, following machines using

MV/8000-., MV/8600-41. AOS/RT32 4.01: MV/4000,
MV/10000, MV/100005X, MV/0000-II MV/1 0000.

all using AOS/VS 5.04 MV/I10000SX.
DOC International VAX 111785 (VMS 4.1) Same as Hoat 1.6 11-26-85
DOC Ada Compiler System

Department of the Army VAX 8600, VAXl1/80, All Hoat Configurations 1.6 10-17-85
ALS AdaVAX Version 2.47 VAX 11/785 (VMS 4.1)

(same as SofTech) MicroVAX II (MlcroVMS 4.1M)
Digital Equipment Corp. VAX 8600, VAX 11/785, VAX All Moat Configurations 1.6 09-06-85
DEC VAX-Ada Compiler V.1.1 11/782 VAX 11//780 VAX 11/750,

VAX 11/730 (VMS 42) MIcroVAX
I&iI, VAX station l&ll
(MICroVMS 4.2) MicroVAX II
(VAXELN 2.01

Honeywell Information OPS 6/9, OPS 6/94, OPS 6/75, All Self-targetd Hosts DPS 1.6 11-29-85
Systems OPS 6(74 & DPS 6/70 (MOD 6/75 (Croa-Compiler from
GCOS6 Ada Compiler 400, Release 3.0 & 3.1) DPS Ws DIPS &W & DPS 6/85 Host
Version 1.1 (MOD 400 Release 3.1)
Honeywell Large Systems DPS-88 (SR2300 (7/85 IFAD Same as Host 1.6 12-20-85
GCOS-8 Version 3.1 8.4 SMAS BO)
Intermetrics Inc. IBM 370 architectum (IBM Same as Host 1.6 12-10-85
12Ada Compiler. 3083, Model BX2 or IBM 4341,

Version 17.08 Model 1-2) (UTS 2.3)

Rational Machine, Inc. R1000 (Rational Environment, Same as Host 1.5 05-24-85
A20.6)

Rolm Corp. Rolm MSE/800 AOS/VS 4.04 Same as Most 1.5 05-24-85
ADE Ada Version 2.30.03.12

Sofrech VAX 80. VAX 111780. VAX All Moat Configurations 1.6 10-17-85
AdaVAX Version 2.47 11/785 (VMS 4.1) MicroVAX II
(same as Oeot. of the Army) (MicroVMS 4.1M)
Sofrech, Inc. VAX 11/780. VAX 11/785 INTEL 8086 on 86/30 board 1.6 11-14-85
Ada6 Version 1.21 (VMS 4.1) & INTEL 80186 on

186/03A board

Figure 2. Validated Ada compilers on April 2, 1986 [3]. (sheet 1 of 2)

14

HOW Mae80 A Tnga Nmulee A Ted Sult De
Vaio & Cowmoer OP IaIg SYSpnm op11q Sydam Vwm Valfvd
Systeam/German MOO. DEC VAX 11/750 (VMS 4.1) Same as Host 1.6 11-24-85
VAX-11
"TeeSoft Inc. VAX 11/710 (UNIX 4.2 BSO) Same as Host 1.4 02-05-85
TeleSoftAda Version 2.016 & (VMS 3.4)
TeeSoft Inc. Gould Power Nods Model 9750 Same as Host 1.6 12-06-85
TaeSoft-Ada Version 2.3C3 (Gould UTX. VI.1)
TeleSoft Inc. Gould Concept/32 Same as Host 1.6 12-06-85
TeeSoft-Ada Version Z3C3 Model 6750 (Gould MPM V32)
TaleSoft Gould PS3000 Workstation Gould Concepl/32 1.6 11-0-5
Ads Comoler Version 2.39 (CSO U Model 670 (MPX 32
ToleSoft Gould Power Node Model 9050 Same a Host 1.6 12-5-85
Aft Compiler Version 2.06 (Gould UTX VI .1)
Verdix Ada Compiler VAX 11/750 (UNIX 4.2 850) Same a Host 1.5 03-15-85
VAda-010-0101

Version V03.04
Verdix Corp. SUN McrosysWm Model Same as Host 1.5 06-07-5
VADS, VAda-010-1010 2/120. (Bkely UNIX 4.2 BSO,

Version V05.00 Relese 1.1)
Verdlx Corp. VAX 11/785 (ULTRIX 1.0) Same a Host 1.5 06-14-85
VADS Version V03.06
Verdix Corp. VAX 11/750 (VMS 4.1) Same Host 1.6 11-17-45
VAOS Version V5.2
Verdix Corp. Tektronix 6130 (UTek. Same as Ho 1.6 11-16-85
VAO$ Version VS.2 Relse 2.1.1)
Verdix Corp. Sequent Balance (Sequent Same as Host 1.6 11-15-85
VAOS Version V5.2 OYNIX, Revlem 1.3.2)
Verdix Corp. CCI Power 6/32 (Power 6 Same as Most 1.6 11-16-5
VAOS Version V52 UNIX. Peese 1-11)
-udsan PeWNIn

Figure 2. Validated Ada compilers on April 2, 1986 (3]. (sheet 2 of 2)

15/(16 blank)

A PLO

REFERENCES

1. JANUS/Ada PACKAGE USER MANUALS, RR Software, Inc. Madison, Wisconsin, 1983.

2. Carlson, William E., Ada: A Promising Beginning, Computer, June 1981.

3. Taking a Hard Line on Software, Defense Electronics, July 1986.

4. Barnes, J. G. P., Progra ming in Ada, Addison-Wesley Publishing Co., 1984.

5. Gehani, Narain, Ada An Advanced Introduction, Prentice-Hall, Inc.,
Englewood Ciffs, N.J., 1983.

6. Reference Manual for the Ada Programing Language, ANSI/MIL-STD-1815A-1983,

7. Pyle, I. C., The Ada Programming Language, Prentice-Hall International
Inc., 1 981.

8. Page, Rex and Didday, Rich; FORTRAN 77 for Humans, West Publishing Co.,
St. Paul, Minnesota, 1980.

9. Schwar, James P. and Best, Charles L., Applied FORTRAN for Engineering and
Science, Science Research Associates, Inc., 1982.

10. McCracken, Daniel D., A Guide To FORTRAN IV Programing, second edition,
John Wiley & Sons, Inc., 1972.

11. Lipschutz, Seymour and Poe, Arthur, Theory and Problems of Programming

with FORTRAN, Schaum's Outline Series, McGraw-Hill Book Co., 1978.

12. Brender, Ronald F. and Nassi, Isaac R., What is Ada?, Computer, June 1981.

13. Spiegel, Murray R., Advanced Mathematics for Engineers and Scientists,
Schaum's Outline Series, McGraw-Hill Book Co., 1971.

14. Mosley, J. D., Validated Compilers, Software Tools Ease Ada Program-
Development Tasks, EDN, August 22, 1985.

15. Suydam, William E., Jr., Proliferation of Ada Compilers Keeps Validation
Services Running, Computer Design, February 1, 1986.

17/(18 blank)

-o 9 A V V I

DISTRIBUTION

Copies

US Army Materiel System Analysis Activity 1
ATTN: AMXSY-MP
Aberdeen Proving Ground, MD 21005

ITT Research Institute 1
ATTN: GACIAC
10 W. 35th Street
Chicago, IL 60616

AMSMI-RD, Dr. McCorkle 1
Dr. Rhoades 1

-RD-AS, Mr . Powell 1
Mr. Todd 1
Mr. Pittman I

-RD-AS-RA, Dr. Loomis 1
Mr. Cornwell 25

-RD-CS-R 15
-RD-CS-T 1

AMSMI-GC-IP, Mr. Bush 1

DIST/(DIST-2 BLANK)

'q '#' ',.',,' .v; ; .,'v...: o" ,. ' - ,%, .. ' -, ,'. .*,F/ ' % .' . . . - , ' .. .' - ' .
-

.. .. .
.

77A

